国際会員 ○西村 真二

岡 信太郎

北條 豊

正会員

正会員

滋賀県守山市におけるコーン貫入試験(三成分コーン,サイスミックコーン,水圧コーン)

㈱地盤試験所

㈱地盤試験所

(㈱地盤試験所

コーン貫入試験,液状化,せん断波速度

1. はじめに

滋賀県守山市において実施された各種サウンディング試 験の一斉試験¹において、3成分コーン貫入試験(CPT)、サイスミックコーン試験(S-CPT)および水圧コーン試験(HPT)を実施した。液状化可能性の判定について、以下の方法で計算し比較した。

① 建築学会の基礎構造設計指針²⁾(以下指針)のN値(C PTからの換算N値)による方法

② 指針の補正gcによる方法

③ 鈴木・時松³⁾のせん断波速度Vsによる方法

④ CPTの水圧uの過剰間隙水圧Δu≒0の領域⁴⁾

⑤ HPTから得られる簡易透水性指標の高い領域

2. 調査結果

本調査で実施した調査概要を表-1に示す。S-CPTとはジ オフォンが内蔵されたCPTプローブを用いて、CPTと同 時に板叩き法によりせん断波速度を測定する調査である。 HPTとはプローブの側面から水を毎分300ml程度吐出さ せながら地盤に貫入し水圧の変化を観察することにより 地盤の透水性を調査する方法である(図-1参照)。

CPTの結果を図-2に示す。図にはボーリング調査で得られた柱状図およびSPTと換算N値の比較も併せて示す。

C-SPTで得られたせん断波速度Vsを図-3に示す。 HPTの試験結果を図-4に示す。

表_1	調杏概亜
1X-1	则日州女

調査法	測定項目	地点1	地点2
CPT	先端抵抗 q _c		
	周面摩擦 fs	-25.4m	-24.0m
	間隙水圧 u		
S-CPT	(上記に加えて)	-25.0m	-24.0m
	せん断波速度 Vs	(1m)	(1m)
HPT	電気伝導度 Ec		
	水圧 P _w		-15.0m
	流量 Q _w		

図-1 S-CPTおよびHPTのイメージ

	(花	利地盤試験所	. 1	止会員	山本伊作
柱状园	土質性状 分類	换罩N值	褚正先编抵抗 qt (Mpa)	周前摩擦 fs (Mpa)	間除水圧 u (Mpa)
					$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
□ 1 親筆粉性土 ■ ■ 2 有機質土 ■ ■ 3 粘土 ■	4 粘土質シルト 5 砂質シルト 6 砂	 ○ 1 砂糖 ○ 8 古な砂 ○ 国際転土 			
柱状团	土質性状	換算N值	(地点1) ^{補正先编版的}	周涵單施 た (Mna)	間隙水圧 µ(Mpa)
				30 0 02 0 0 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	
2 有機算土 3 粘土	4 粘工員ンルト 5 粉質シルト 6 粉	 ○ 日本 ○ 日本 ○ 日本 ○ 日本 	(地占つ)		
		図-2	(^{地点2}) 三成分CI	PT結果	
		Vs (m/s)		v	s (m/s)
		0 100 200 300 -1 -2 -3 -4 -5	o		

図-3 せん断波速度Vs

3. 液状化可能性の判定

判定条件はM=7.5, α=200gal(中地震相当)とした。①, ②は指針に従って算出した。

③については補正せん断波速度Vsaを式-1により求め、図 -5に示す関係からせん断抵抗比を求めた。

 $V_{sa} = V_{s} \cdot \frac{98}{\sigma_{z}} \cdot \frac{(46 \cdot 1.9 - 5)}{(46 \cdot I_{c} - 5)}$ (\$\vec{\pi}\$-1)

ここに,Vs:測定せん断波速度(m/s), σ'z:有効土被り圧, L:土質性状指数

図-5 補正せん断波速度Vsaとせん断抵抗比τl/σ'z

④についてはCPTの間隙水圧uが緩い砂層おいては静水 $Eu_0 \varepsilon = \tau \phi$ のあることから式-2で過剰関係水圧 $\Delta u \varepsilon$ 求めた。砂層で $\Delta u = 0$ であれば緩い透水性が高く液状化 の可能性が高いと判定する。

 $\Delta u = u - u_0 \qquad (\vec{\mathfrak{X}}-2)$

ここに,u:測定間隙水圧(kPa), u₀:静水圧(kPa)

⑤についてはHPTにおける透水距離が水圧に比例すると 仮定してデータから簡易な透水性指標として式-3に示す 指標k^{*}を考えた。この指標が大きいほど地盤の透水性が 高く液状化の可能性が高いと判定する。

$$k' = \frac{Q_h}{(h_w - h_0)^2} \qquad (\vec{\mathbb{X}}-3)$$

Qh:流量(cm³/s), h_w:HPT換算水頭(cm), h₀静水圧水頭(cm) 以上5種類の検討結果を図-6に示す。地点1においては 全ての指標がGL-2.0~-4.5mの砂層が液状化可能性がある と判定している。細かく見ると①と②, ③では傾向が異 なり、N値によるものが控えめの結果となっている。水 圧系の④, ⑤も他と対応した傾向を示しており判定指標 となりうると考えられる。k'についてはk'=10⁻⁶cm/sあた りをしきい値とすると他の指標と傾向が合う。

地点2はGL-10m付近までの砂層について,全ての指標 が液状化の可能性があるという判定となっている。地点 1と同様にN値によるものが控えめの結果となっている。 -10m以深については各指標にバラツキが見られる。

図-6 液状化可能性判定結果

5. まとめ

・N値、qc値およびせん断波速度VsによるFLを比較する

とN値によるものが控えめな判定となる。

・CPTの間隙水圧,HPTの簡易透水性指標k'は砂層の透

水性の観点からの液状化判定の指標となりうる。

・GL-10m以深の判定については各指標でバラツキが見られる。

参考文献

- 大島昭彦他:滋賀県守山市における地盤調査一斉試験(その1:調査概要とSPT),第48回地盤工学研究 発表会,2013.7(投稿中)
- 2) 日本建築学会:建築基礎構造設計指針, 1998
- 3) 鈴木康嗣,時松孝次:地震時の液状化事例とせん断波 速度の関係,日本建築学会構造系論文集 第578号, 67-74 2004.4月
- 4) 西村真二他:京葉湾岸地区における液状化後の地盤 に対する3成分コーン貫入試験,第9回地盤工学会 関東支部発表会,2012年10月