鋼管杭,琉球石灰岩,杭の鉛直載荷試験

(㈱地盤試験所正会員○吉國将大沖縄県非会員作村守(㈱エイト日本技術開発正会員金聲漢(㈱地盤試験所正会員高野公作(㈱地盤試験所国際会員西村真二

1. はじめに

伊良部大橋は宮古島と伊良部島を結ぶ長さ3540mの海 中横断橋で2014年の開通を目指して工事が進んでいる。 橋梁部の基礎として打ち込み工法による鋼管杭または鋼 管矢板基礎が採用された。地盤は砂礫状石灰岩の下に支 持層として島尻層群と呼ばれる琉球石灰岩の砂岩および 泥岩が分布している。島尻層群に根入れされた杭の支持 力の確認と施工管理式の作成のために,宮古島側の泥岩 層(P3橋脚)および砂岩層(P9橋脚)において衝撃載荷 試験および押込み試験が,主航路部(P32橋脚)におい て衝撃載荷試験および急速載荷試験が実施された。本稿 では本プロジェクトにおいて実施された載荷試験の位置 付けを整理するとともに載荷試験結果について報告する。

2. 地盤条件および試験杭の諸元

載荷試験を実施したP3橋脚(泥岩層), P9橋脚(砂岩 層)およびP32橋脚(主航路部)の土質柱状図と試験杭 姿図を図-2に示す。また各橋脚における地盤パラメータ の概要を表-1にまとめた。本地盤の特徴は海底下十数m のN値5~15の珊瑚礁由来のシルト混じり砂礫地層の下に 支持層としての岩層が現れる。岩層は泥岩、砂岩ともに N値では50超である。砂岩層の強度のバラツキが大きい。 非排水せん断強度(粘着力)は,P3とP9で平均500kN/m² 程度で主航路部のP32が大きくなっている。押込み試験 と急速載荷試験の試験杭の仕様を表-2に示す。

表-1 地盤概要							
	上部	了層	支持層				
橋脚	地盤	平均N值	地盤	平均 N 値	非排水 せん断強度 (kPa)		
P3	ジルト混じり 砂礫	18	泥岩	60 (50~75)	500 (350~800)		
P9	ジル・混じり 砂礫	5	砂岩	79 (28~150)	500 (460~900)		
P32	ジルト混じり 砂礫	10	泥岩	88 (75~115)	1400 (900~2100)		

表-2 試験杭仕様

試験時期	杭№	鋼管径 φ (mm)	杭長 L (m)	板厚 t (mm)	先端深度 (EL m)	先端地盤 杭先端	支持層 根入比
2007	P3-9	1000	22.0	14	-15.9	泥岩 開端	2.1
	P9-9	1000	31.0	14	-24.8	砂岩 開端	5.3
2008	P9-11	1000	24.8	12	-24.7	砂岩 開端	5.2
	P9-12	1000	28.3	14	-21.3	砂岩 円弧リブ	1.8
2010	P32-T1	1200	28.6	14	-24.4	泥岩 開端	2.4
	P32-T2	1200	31.0	14	-26.8	泥岩 開端	4.4

Static and Rapid load tests for the steel pipe piles installed into the sand rock and mud rock at the Irabu bridge M.Yoshikuni(Jibanshikenjo), M.Nakamura(Okinawa prefecture), S.Kim(Eight-Japan Engineering Consultants), K.Takano, S.Nishimura(Jibanshikenjo)

3. 載荷試験の実施

本プロジェクトにおいて実施した載荷試験を表-3にま とめた。3期に分けて実施した載荷試験数は27試験に及 んだ。その内大掛かり即ち高コストな押込み試験は4試 験,次に費用の掛かる急速載荷試験が2試験で残りの21 試験は衝撃載荷試験であった。急速載荷試験については 杭頭にクッションを設置し重錘を落下させるタイプのハ イブリッドナミック試験¹を実施した。

表-3 実施した載荷試験					
試験時期	橋脚	載荷試験	数量		
	P3	施工時衝撃載荷試験	3		
2007		押込み試験	1		
	Р9	施工時衝擊載荷試験	3		
		養生後衝撃載荷試験	2		
		押込み試験	1		
	P3	養生後衝撃載荷試験	2		
2008	P9	施工時衝撃載荷試験	5		
2006		養生後衝撃載荷試験	2		
		押込み試験	2		
	P32	施工時衝撃載荷試験	2		
2010		急速載荷試験	2		
2010	P33	施工時衝擊載荷試験	1		
	P34	施工時衝撃載荷試験	1		

(急速載荷試験)

(衝撃載荷試験)

(押込み試験) 写真-1 実施した載荷試験

本プロジェクトにおける載荷試験の位置付けを図-3に 示す。載荷試験の本来の目的は設計の妥当性の確認であ る。設計で見込んだ鉛直支持力性能を発現するかどうか を現場の実杭で確認する行為である。支持力性能の品質 保証という意味では全ての杭に対し載荷試験を実施する ことが理想であるが現実には不可能である。図-3は養生 後の押込み試験、急速載荷試験による支持力の確認とと もに施工時の衝撃載荷試験を加えて、養生後載荷試験の 結果を反映した施工管理式を作成することにより、全て の杭に対する支持力品質の確認への展開を示している。

さらに本プロジェクトにおいては、珊瑚礁由来の地盤 であることから支持層地盤の不均一性という問題があり、 想定深度で打ち止まらないなどの現象が発生した。その ため衝撃載荷試験の数を増やすことにより支持層上端深 度のバラツキや支持層内の強度のバラツキなど地盤強度 の不均一性に関するデータを収集し対処した。衝撃載荷 試験は比較的手軽に実施できることから、このような場 合に非常に有用である。今回と同様に琉球石灰岩層を支 持層とする古宇利大橋のプロジェクトにおいても衝撃載 荷試験を多用することにより地盤の不均一性に対処して いる²⁾。

主航路部(P32橋脚)における載荷試験の流れを図-4 に示す。主航路部は構造物の重要性,前の載荷試験実施 位置からの距離や杭径が大きくなることから支持力確認 が必要となった。載荷試験方法の選定にあたり,P3、P9 橋脚における押込み試験により岩層の基本的な支持力の 確認はできていることから、経済性を考慮して養生後試 験としては急速載荷試験が採用された。急速載荷試験は P32橋脚で実施されることとなり,地盤の不均一性の確 認と急速載荷試験の水平展開のために,P33,34橋脚で 施工時の衝撃載荷試験が実施された。そのフローを図-4 に示す。

5. 終わりに

伊良部大橋においては島尻層群と呼ばれる強度の不均 一性の高い琉球石灰岩層に根入れされた鋼管杭の支持力 を確認するために実施された載荷試験について述べた。 本プロジェクトのような複雑な地盤において杭基礎の支 持力性能を担保することは容易ではない。今回は衝撃載 荷試験、急速載荷試験および押込み試験を組み合わせる ことにより、島尻層群の支持力を確認するとともに合理 的な施工管理手法を確立することができた。なお、載荷 試験の結果については対報³で述べる。

最後に,本試験の実施に際してご協力頂いた関係者各 位に謝意を表する。

参考文献

- 宮坂享明他:大沈下を伴う杭急速載荷試験結果の解 釈,第42回地盤工学研究発表会,pp.1185-1186, 2007.7千葉
- 又吉他:古宇利大橋建設工事における衝撃載荷試験と 施工管理手法,基礎工 2005.8月号
- 3) 富岡他:伊良部大橋における琉球石灰岩層に根入れ された鋼管杭の支持力について,第47回地盤工学研究 発表会(投稿中),2012